Relating ranging ecology, limb length, and locomotor economy in terrestrial animals.

نویسنده

  • Herman Pontzer
چکیده

Ecomorphological analyses have identified a number of important evolutionary trends in vertebrate limb design, but the relationships between daily travel distance, locomotor ecology, and limb length in terrestrial animals remain poorly understood. In this paper I model the net rate of energy intake as a function of foraging efficiency, and thus of locomotor economy; improved economy leads to greater net energy intake. However, the relationship between locomotor economy and net intake is highly dependent on foraging efficiency; only species with low foraging efficiencies experience strong selection pressure for improved locomotor economy and increased limb length. Examining 237 terrestrial species, I find that nearly all taxa obtain sufficiently high foraging efficiencies that selection for further increases in economy is weak. Thus selection pressures for increased economy and limb length among living terrestrial animals may be relatively weak and similar in magnitude across ecologically diverse species. The Economy Selection Pressure model for locomotor economy may be useful in investigating the evolution of limb design in early terrestrial taxa and the coevolution of foraging ecology and locomotor anatomy in lineages with low foraging efficiencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective limb length and the scaling of locomotor cost in terrestrial animals.

Relative to body size, smaller animals use more energy to travel a given distance than larger animals, but the anatomical variable driving this negative allometry remains the subject of debate. Here, I report a simple inverse relationship between effective limb length (i.e. hip height) and the energy cost of transport (COT; J kg(-1) m(-1)) for terrestrial animals. Using published data for a div...

متن کامل

Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds.

The energy cost of terrestrial locomotion has been linked to the muscle forces generated to support body weight and swing the limbs. The LiMb model predicts these forces, and hence locomotor cost, as a function of limb length and basic kinematic variables. Here, I test this model in humans, goats and dogs in order to assess the performance of the LiMb model in predicting locomotor cost for bipe...

متن کامل

A unified theory for the energy cost of legged locomotion.

Small animals are remarkably efficient climbers but comparatively poor runners, a well-established phenomenon in locomotor energetics that drives size-related differences in locomotor ecology yet remains poorly understood. Here, I derive the energy cost of legged locomotion from two complementary components of muscle metabolism, Activation-Relaxation and Cross-bridge cycling. A mathematical mod...

متن کامل

Life on the rocks: habitat use drives morphological and performance evolution in lizards.

As a group, lizards occupy a vast array of habitats worldwide, yet there remain relatively few cases where habitat use (ecology), morphology, and thus, performance, are clearly related. The best known examples include: increased limb length in response to increased arboreal perch diameter in anoles and increased limb length in response to increased habitat openness for some skinks. Rocky habita...

متن کامل

Morphological conservation of limb natural pendular period in the domestic dog (Canis familiaris): implications for locomotor energetics.

For better understanding of the links between limb morphology and the metabolic cost of locomotion, we have characterized the relationships between limb length and shape and other functionally important variables in the straightened forelimbs and hindlimbs of a sample of 12 domestic dogs (Canis familiaris). Intra-animal comparisons show that forelimbs and hindlimbs are very similar (not signifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 296  شماره 

صفحات  -

تاریخ انتشار 2012